Financial LPPL Bubbles with Mean-Reverting Noise in the Frequency Domain
نویسنده
چکیده
The log-periodic power law (LPPL) is a model of asset prices during endogenous bubbles. A major open issue is to verify the presence of LPPL in price sequences and to estimate the LPPL parameters. Estimation is complicated by the fact that daily LPPL returns are typically orders of magnitude smaller than measured price returns, suggesting that noise obscures the underlying LPPL dynamics. However, if noise is mean-reverting, it would quickly cancel out over subsequent measurements. In this paper, we attempt to reject mean-reverting noise from price sequences by exploiting frequency-domain properties of LPPL and of mean reversion. First, we calculate the spectrum of mean-reverting Ornstein-Uhlenbeck noise and devise estimators for the noise’s parameters. Then, we derive the LPPL spectrum by breaking it down into its two main characteristics of power law and of log-periodicity. We compare price spectra with noise spectra during historical bubbles. In general, noise was strong also at low frequencies and, even if LPPL underlied price dynamics, LPPL would be obscured by noise.
منابع مشابه
Fitting the Log Periodic Power Law to financial crashes: a critical analysis∗
A number of papers claim that a Log Periodic Power Law (LPPL) fitted to financial market bubbles that precede large market falls or ‘crashes’, contain parameters that are confined within certain ranges. The mechanism that has been claimed as underlying the LPPL, is based on influence percolation and a martingale condition. This paper examines these claims and the robustness of the LPPL for capt...
متن کاملApplication of Single-Frequency Time-Space Filtering Technique for Seismic Ground Roll and Random Noise Attenuation
Time-frequency filtering is an acceptable technique for attenuating noise in 2-D (time-space) and 3-D (time-space-space) reflection seismic data. The common approach for this purpose is transforming each seismic signal from 1-D time domain to a 2-D time-frequency domain and then denoising the signal by a designed filter and finally transforming back the filtered signal to original time domain. ...
متن کاملکاهش اثر نویز تناوبی در تصاویر دیجیتال به کمک فیلتر میانه تطبیقی در حوزه فرکانس
Periodic noises are repetitive patterns on digital images and decreased the visual quality of images. The various methods for reducing the effects of the periodic noise in digital images are firstly investigated. Then an intelligent median filter in the frequency domain with an acceptable computational cost is proposed. In the proposed method, the regions of noise frequencies are determined by ...
متن کامل4 N ov 2 01 0 Leverage Bubble
Leverage is strongly related to liquidity in a market and lack of liquidity is considered a cause and/or consequence of the recent financial crisis. A repurchase agreement is a financial instrument where a security is sold simultaneously with an agreement to buy it back at a later date. Repurchase agreements (repos) market size is a very important element in calculating the overall leverage in ...
متن کاملEstimating Persistence in the Volatility of Asset Returns with Signal Plus Noise Models
This paper examines the degree of persistence in the volatility of financial time series using a Long Memory Stochastic Volatility (LMSV) model. Specifically, it employs a Gaussian semiparametric (or local Whittle) estimator of the memory parameter, based on the frequency domain, proposed by Robinson (1995a), and shown by Arteche (2004) to be consistent and asymptotically normal in the context ...
متن کامل